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We make a numerical study of the solutions of the equations of motion for the 
electromagnetic field in a one-dimensional model of a radiant cavity. Our main 
results are as follows: (1) There exist stochasticity thresholds such that below 
them one has ordered motions without energy exchanges, while chaotic motions 
with intense energy exchanges occur above them; (2) above thresholds there is a 
trend toward equipartition of energy (in time average) among the normal modes 
of the field, but this occurs in the sense of Boltzmann and Jeans, namely, with 
the higher frequencies requiring longer and longer times in order to be involved 
in the energy sharing. 
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1. I N T R O D U C T I O N  

a. One of the most  f amous  p rob lems  of classical  s tat is t ical  physics  concerns  
the d is t r ibu t ion  of energy a m o n g  the infini te  osci l lators  (or n o r m a l  modes)  
const i tu t ing the e lec t romagnet ic  f ield in a cavity.  The  c o m m o n  a t t i tude  has  
a lways  been  to th ink  that  equipar t i t ion  would  obta in ;  this was inferred by  
analogy,  because  equipar t i t ion  was bel ieved to have  been  proven,  on the 
basis  of dynamics ,  for systems of a f inite n u m b e r  of mechan ica l  oscil lators.  
O n  the o ther  hand ,  this p r o b l e m  was recent ly  r eopened  af ter  the establ ish-  
men t  of the Ko lomogorov ,  Arno l ' d ,  and  Mose r  theorem,  accord ing  to 
which a finite system of classical  osci l lators  at  low enough energy is in 
genera l  nonergodic ,  so that  equipar t i t ion  of energy does not  necessar i ly  
follow. 
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In fact, the typical situation occurring for finite systems of weakly 
coupled oscillators can be described in a first rough approximation, on the 
basis of several recent numerical computations, by saying that one has 
ordered motions (with an energy distribution strongly dependent on the 
initial conditions) at low enough energies, and chaotic motions (roughly 
leading to equipartition) at higher energies. And thus, still by analogy, one 
could then guess that a similar situation should obtain also for the electro- 
magnetic field in a cavity. (l) 

b. The problem is then to discuss, on the basis of dynamics, the open 
problem of the distribution of energy among the oscillators constituting the 
electromagnetic field in a cavity. This was first accomplished for a simple 
model, proposed by Bocchieri et  al. ,  (2) in which one considers the electro- 
magnetic field between two fixed infinite parallel mirrors; in order to avoid 
difficulties related to the structure of elementary charges, a coupling among 
the modes of the field is provided by a macroscopic object, precisely a 
uniformly charged infinite plane parallel to the mirrors, situated midway 
between them, which can translate along a given direction parallel to the 
mirrors. Such a model is actually one dimensional, and the equations of 
motion turn out to be linear. Consequently the system is integrabte and 
does not lead to equipartition. 

The interesting problem is then to see what happens when a nonlinear- 
ity is added. Thus in Refs. 3 and 4 the nonlinearity was provided by the 
addition of a mechanical restoring force acting on the charged plane; on 
the basis of numerical computations, indications were found of no qualita- 
tive change with respect to the linear case within a broad range of values of 
the parameters characterizing the model. On the other hand, a very 
interesting analytical result was found by Guarneri and Toscani, (5) who 
studied a variant of the model, where the charged plane, acted upon by a 
purely linear spring, is subjected to a stochastic perturbation simulating a 
thermal contact with a heat bath. In such a model they proved the 
existence of a trend toward equipartition of energy among the modes of the 
field, every mode having, however, a characteristic relaxation time toward 
equipartition, increasing with frequency, as proposed long ago by Boltz- 
mann and Jeans. (6) 

In the meantime, systems of coupled oscillators corresponding to 
models of mechanical type were intensively studied numerically, and the 
phenomenon of a transition to stochasticity was discussed in terms of the 
notion of an energy threshold for stochasticity, characteristic for each 
oscillator (7-1~ (see also Ref. 11). 

With such background we thus came to reconsider the one- 
dimensional model of a radiant cavity quoted above, investigating it by 
means of numerical computations the results of which are reported in the 
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present paper. The result found is that a transition to stochasticity occurs 
here too in a way analogous to that by now familiar for mechanical 
systems. Moreover a trend toward equipartition in the sense of Boltzmann 
and Jeans was also observed; this on the one hand confirms the result of 
Guarneri and Toscani, and on the other hand shows that a heat bath is not 
necessarily required for such an effect. 

c. In Section 2 the model is described and the equations of motion are 
conveniently handled. Moreover, a discussion is made of the parameters 
entering the problem, in order to guarantee the conditions which allow the 
system to be considered as constituted of oscillators weakly coupled by the 
charged plane. In Section 3 the numerical results obtained are illustrated, 
and the conclusions follow. 

2. T H E  M O D E L  

Let us write down the equations of motion for the model quoted in the 
Introduction, referring to Refs. 2-4 for more details. 

Taking an orthogonal frame of reference such that the charged plane 
lies on the y z  coordinate plane and moves along the z axis, and choosing 
the Coulomb gauge for the field, the unknowns of the problem reduce to 
the z component A z ( x , t  ) of the vector potential and to the vertical 
coordinate z ( t )  of a suitable point of the charged plane. The equations of 
motion and boundary conditions are then 

02A~ 1 3ZA~ _ 4--E 06(x)2 
Ox 2 c 2 Ot 2 c 

m2 = o OA~ (O,t) + F ( z )  (1) 
c at 

A ~ ( - l , t ) = A ~ ( l , t )  = 0  

Here, c is the velocity of light, rn and a are the mass and charge density, 
respectively, of the charged plane, 2l is the distance between the mirrors, 
while 6( ) denotes the Dirac "function," and F(z )  represents a mechanical 
restoring force acting on the plane: precisely, (1 /m)F(z)  = -~o~z - az 3, ~o 
and a being parameters. 

The problem of physical interest is to study the distribution of energy 
among the normal modes of the electromagnetic field, which are considered 
to be weakly coupled by the charged plane. To this end the normal-mode 
amplitudes an(t ) ( n =  1,2,3 . . . .  ) are defined by A z ( x , t ) = ~ . ~ = l a . ( t )  
u . (x) ,  where u . (x )  = 2c(~r / l )  1/2 cos ~o.x/c,  and ~0. = (Trc/2l)n. 

The model turns then out to be described in these variables by the 
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Lagrangian function 

1 ~ , ( . 2  2 2 
= a n - -  6dna n )  e(a ,a ,z ,e )  2 n=, 

+ rn2 2 -  V ( z ) + 2  
n = l  (2) 

= m( 1 2 2 "t" a V(z)  

where a = (a l ,a3 ,as , . . . ) ,  ~ = (@h3,ds . . . .  ) and ~ '  denotes a sum re- 
stricted to the odd positive integers n -- 1,3, 5 . . . .  ; indeed one easily sees 
that the even modes have a trivial free dynamics and can actually be 
neglected, so that one remains with the problem of the distribution of 
energy among the odd modes. This is a conservative system, whose total 
energy is 

E = ~m2 2 + V(z)  + 'E n (3) 
n = l  

where 
2 2 "77s E, 21 (~2 + %a, ) ,  % = 2-i n (4) 

are the energies and the angular frequencies of the normal modes of the 
field. 

The problem is now to handle with a computer the infinite system of 
equations deduced from (2), namely, 

2(  )1/2o  (n = 1,3,5, ) (Sa  //n + % a  n2 = -/ . . .  

m an -  (%zz + ~z3) (5b) 
n = l  

As a matter of fact, this system can be rewritten in the form 

( ~r )'/2o2 (n = 1,3,5, . ) (6a) //n + coZan = 2 -/ . .  

m n = l  

m e  k =  1 C 

where N(t) is the integer part of ct /2l  and a~ a~  + (ci~ 
s in%t  are the free field solutions of (5a), i.e., the solutions with o = 0, with 
initial data o .0 So one sees that Eq. (6b) for the charged plane contains a n ,  a n  �9 

no explicit reference to the variables of the field, apart from the known 
ones a~ instead, it contains explicitly the velocity 2 of the plane at 
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suitable previous times. Such an equation can thus be handled numerically, 
and the solution so computed can then be inserted into the right-hand side 
of (6a) as a known term. In such way one can compute an(t ) and thus the 
normal-mode energies En(t ) for any n = 1, 3, 5 . . . . .  

As to the deduction of Eq. (6b) from the system (5), one first obtains 
from (5a) an integral expression for dn(t ) as a function of z(t) and 
substitutes it into (5b), exploiting then the identity 

,s _ d x =  4 ( 0 )  

for any a > 0. Alternatively, one can make use of Kirchhoff's formula for 
the retarded potentials of the electromagnetic field, applied directly to 
system (1). 

Let us finally come to a discussion of the parameters entering the 
model, namely, c , / ,  o, m, %,  a, in order to extract from them dimension- 
less parameters of particular relevance. In fact, at variance with Refs. 3-4, 
we always considered the simpler case with % = 0, so that such parameter 
will be neglected. 

A first relevant dimensionless parameter, already considered in the 
previous works (2-4) on this model is 

2rrla 2 
y - (7) 

mc 2 
which can be taken as characterizing the strength of the coupling in the 
system, as explained in a moment. Indeed the free field has proper 
frequencies % = (rrc/2l)n with a fixed spacing ~ = (r In the case of 
a linear coupling (i.e., with a = 0), as shown in Ref. 2, the coupled field has 

* with a shift & % _  ~% - %  satisfying the instead proper frequencies o~ n = * 
equation 

co t (&%/a )  = ---fl--- + n 

This equation has the approximate solutions & o J f ~ , / n  if y /n  << 1, and 
thus the frequency shift 6% for all modes is small (with respect to the 
spacing f~) provided y << 1. In this sense we say that, for 7 << I, the field can 
be considered as constituted of free modes with a weak coupling, measured 
by y. This is also confirmed by the remark that ,/ appears as the ratio of 
two characteristic times, precisely mc/2rra 2, which according to (6b) char- 
acterizes a damping on the plane due to the coupling with the field, and 
l /c,  which is a typical macroscopic time of the free field. 

We come now to a characterization of the nonlinearity. The nonlinear- 
ity in the force F(z) acting in the charged plane is determined by a; a more 
appropriate parameter turns out instead to be the product Ea, where E is 
the total energy of the system. Indeed it is easy to show that there is an 
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isomorphism between a dynamical system (2) with a pair (E,a) and 
another one with a pair (E',a')  if E'a'  = Ea, in the sense that the orbits of 
the one are deduced from the orbits of the other by a change of scales of 
the z coordinate and of the field amplitude. As a corresponding dimension- 
less number characterizing the nonlinearity in the model we took 

- -  - ( 8 )  
Y 

Indeed one easily checks that such parameter admits of a clear physical 
interpretation, as it turns out to give the ratio of the two maximal accelera- 
tions of the charged plane, ~ = - a z  3 and ~ = - 7 ( c / I ) ~ ,  due to the 
nonlinear mechanical restoring force and to the electromagnetic force [see 
Eq. (6b)], respectively, at a fixed energy E, if the whole energy is given to 
the charged plane. 

In conclusion, as significant dimensionless parameters in the model we 
have 7, given by (7), characterizing the strength of the (linear) coupling 
among the field modes, and e, given by (8), characterizing the nonlinearity 
of the system. This situation is rather atypical with respect to most familiar 
systems of interacting particles, where the energy E determines simulta- 
neously both the nonlinearity and the coupling, so that the corresponding 
integrable systems are obtained by letting E tend to zero. In the present 
model, instead, an integrable system is obtained either by taking the limit 
e ~ 0, i.e., for example, E ~  0 (linearly coupled integrable system), or by 
taking the limit 7 ~ 0 (nonlinear integrable system). 

3. DESCRIPTION OF THE NUMERICAL RESULTS 

3.1. Numerical Integration 

As already anticipated, the system of differential equations for our 
model as written in the form (6) is particularly suited for numerical 
integration. (3'4~ Indeed, in each time interval k < c t /2 l  < k + 1 (k = 1, 2, 
3 . . . .  ) Eq. (6b) for the unknown z(t) takes the form 

= - - + a ( t )  + & ( t )  ( 9 )  

where a and fl are constants, while G(t) and Sg(t) are known functions; 
Eq. (9) can be integrated by any standard numerical scheme. In turn, the 
function z (t) thus determined, when inserted into each of the equations (6a) 
for the unknown a,(t) (n = 1,3,5 . . . .  ), allows one to compute as many of 
the field amplitudes a,(t) as one likes. 

A few details on the numerical scheme actually used in this paper are 
described in the Appendix. The important remark should however be made 
that a discretization of time necessarily implies a cutoff on the frequencies 
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of the modes that can actually be handled. Thus, in our computations, 
using a time step of typically 5 • lO-31/c, we never considered modes with 
n > 25, i.e., with a proper period less than O.16l/c. 

3.2. Stochasticity Thresholds 

A first series of experiments was intended to determine the possible 
existence of stochasticity thresholds analogous to those recently observed in 
other models of weakly coupled oscillators. (7-11) In such models one 
proceeded in the following way: all of the energy was given initially to just 
one mode or to a group of modes of close frequencies, and for each group 
one looked for the existence of a characteristic energy threshold, in the 
sense that the energy sharing with other modes was sensible only above that 
threshold. 

To proceed in an analogous way, we took a fixed value of the coupling 
"y (namely, 7 = 0.2~r) and considered groups of two nearby modes, for 
example, the group of modes 1 and 3 (i.e., with n = 1 and n = 3), or the 
group of modes 5 and 7 and so on. In each experiment, having fixed the 
group and a value of the nonlinearity c, the initial condition was defined by 
assigning 95% of the energy to the modes (in the form of kinetic energy, 
and equally distributed between them) and the remaining 5% of the energy 
to the charged plane (again in the form of kinetic energy). The equations of 
motion were then solved numerically for a time T with typically T 
= 104[/c. The intensity of the energy sharing was measured by the quantity 

}k - -  E m a x  - E m i n  

emax (10) 

where E max = maxo<~t<rE(t), E min --- mino<~t<rE(t), E(t) being the sum of 
the energies of the two initially excited modes at time t. One has obviously 
0 < X < 1, with ?t = 0 for no energy sharing, and ~ = 1 when E min = 0, i.e., 
if at least at one time up to T the considered oscillators had no energy. One 
can thus draw a curve of ?~ vs. e for each group. 

The results are shown in Fig. 1, where ?~ is plotted versus �9 (for fixed 
y = 0.2~ and T up to 104l/c) for the groups (1, 3), (5, 7), (7, 9), (9, 11), and 
(13, 15). The curves indicate for each group a very sharp transition from 
essentially no energy sharing to an almost complete energy sharing, at a 
well-defined critical value e c of e. In agreement with the results found for 
several systems of mechanical oscillators, (7-10 the critical value e c appears 
to be an increasing function of the frequency of the modes. This is shown 
in Fig. 2, where � 9  as taken from Fig. 1, is plotted versus the average 
frequency of the modes of the considered group. 

A complete analysis of the model would require a study of the 
dependence of the thresholds on the coupling parameter 7- As an example, 
this has been done for the group of modes (5, 7), and the results thus 
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Fig. 3. Critical value e c for the group of modes  (5, 7) versus the coupling parameter  y. The 
interpolating curve E c = 1.2(qr/~, - 1) is also exhibited. 

obtained for c c vs. V are shown in Fig. 3. As expected, e C is a decreasing 
function of V. In fact, if one makes a corresponding plot of e c vs. 1/-/, the 
four points available turn out to be surprisingly well fitted by the straight 
line e~= 1 .2(7r / , / -  1), according to which one extrapolates a vanishing 
value of e ~ for y ~, ~r. The interpolating curve is also drawn in Fig. 3. 

In conclusion, the results reported in Fig. 1 in connection with the 
energy sharing certainly give a striking evidence of the occurrence of a kind 
of transition at the threshold e q In fact, this is not enough to give complete 
information on the partition of energy among the modes, because one only 
knows that above threshold some other modes, in addition to the ones 
initially excited, are involved in intense energy sharing. Thus this point 
deserves a further investigation, on which we will report in Section 3.4. 
Nevertheless, one is certainly authorized to say that, by going through any 
such threshold e ~, one passes from an ordered motion to a chaotic (or 
stochastic) motion, as illustrated in the following section. 

3.3. Exhibition of Stochasticity Through the 
Maximal Ljapunov Exponent 

It has by now become a quite accepted fact that stochasticity in 
dynamical systems consists in the rapid, exponential-like, divergence of 
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nearby orbits, (j2) also called "sensitive dependence on initial condi- 
tions,,,(13) which can be formalized by means of the notion of the Ljapunov 
characteristic exponents (LCE) of a system. (14-16) Indeed, one says a 
dynamical system presents a stochastic behavior in a region of its phase 
space if its maximal LCE is thereby positive. For an elementary introduc- 
tion oriented toward numerical applications of the present kind see, for 
example, Ref. 16. 

Just in order to fix the notations, let us recall the definition of the 
LCEs of a dynamical system described by a differential equation 2 = f(x) 
in the finite dimensional Euclidean space R n. Given a solution x(t) with 
x(0) = x o, one defines then the LCE X by 

X(Xo, ~0) -- lim 1 lnll~(t)ll (11) 
t---> ~ 

where ~(t) is the solution of the corresponding variational equation with 
initial condition ~(0) = ~0. Having fixed x0, X can take at most n different 
values when ~0 is varied in Rn; in fact, however, it takes the maximal one, 
which we denote by X(Xo), apart from a set of initial data ~0 of vanishing 
Lebesgue measure, which is negligible in numerical computations. In prac- 
tice, having fixed x o and chosen any ~0, one computes ~(t) and thus the 
quantity 

X, = +lnll~(t)ll (12) 

looking for its asymptotic behavior when t-~ ~ .  Experience shows that 
log-log plots are particularly suited to this end. 

In the case at hand one is confronted with the problem that the theory 
of the LCEs has not yet been developed for infinite-dimensional systems. 
Thus we proceeded by formal analogy and found results which appear to 
be rather consistent. 

First of all we remark that, in the same way as from system (5) one 
obtains system (6), one also can put the corresponding variational equa- 
tions of system (6) in the form 

vr 1/2. 
~ + ~ 2 ~ , = 2 ( 7 )  ~z ( n =  1,3,5 . . . .  ) (13a) 

~z = - 2  (q7)1/2~7 ~,~0n 
n = l  

- r  2 t-2kl + 3~z2(~) (13b) 
k = 1  T ] 

where ~z and ~, are the variations of z and a n, respectively. Thus one is able 
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to compute as many components of the infinite-dimensional vector ~ = (~, 
~z,~],~1,~3,~3 . . . .  ) as one likes; in such way one can take as an approxi- 
mation to [l~(t)[[ the Euclidean norm in the subspace of the components 
(~z, ~z, ~], ~1 . . . .  , ~ ,  ~N), with an arbitrary N. This procedure turned out to 
be consistent because, already for small values of t (say, t > lO01/c), Xt 
was found to be almost completely insensitive to the choice of N; indeed, 
no change in the first few digits of Xt was observed by considering several 
cases of N in the range 0 < N < 20. Thus in practice one can even take 
N = 0, i.e., one can consider only the components ~,  ~z corresponding to 
the coordinates z and 2 of the charged plane. 

Having recalled these technical facts, we come now to an illustration 
of the results. The aim is to check whether, by going through any of the 
thresholds c c defined in terms of the parameter )t as in Fig. 1, one indeed 
passes from a situation of ordered motions (namely, with X = 0) to a 
situation of stochastic motions (namely, with X > 0), where X = lim,__,o~ X,. 
To this end we considered, for example, two initial conditions with excita- 
tion of the group of modes 5 and 7 (in the sense explained in Section 3.2) at 
c = 3.5 and 5.0, respectively; recall that, according to Fig. 1, one has 
ec.~4.5. As one sees in Fig. 4, Xt appears to tend to zero in the first case, 
and to a well-stabilized positive value in the second case. In this way we 
seem to be authorized to interpret the thresholds defined by the results of 
Fig. 1 as stochasticity thresholds. 

3.4. Energy Distr ibution 

Thus we have shown that, for a fixed value of the coupling parameter 
"y, the model presents a stochasticity threshold c c for each group of 
oscillators; this can be thought of as a function cc(o~) of the average 
frequency ~o of the group and is indeed an increasing function of oa. As a 
consequence, there is in fact no problem of energy distribution when only 
one group of oscillators is initially excited, below threshold. 

A sharp change occurs instead when a group is initially excited above 
its threshold. In such case indeed we know already, from the results of 
Section 3.2, that there has been at least a moment in which the considered 
group gave out essentially all of its initial energy to some other modes or to 
the charged plane (which can be likened to a mode of vanishing frequency). 

The problem is then to know how the energy is distributed among all 
the modes in time average. So we look at the quantities 

1 forE,(t)dt (14) 

where E,(t) is the energy of the nth mode at time t. 
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Fig. 4. Exhibiting the transition to stochasticity by means  of the maximal Ljapunov charac- 
teristic exponent X = limt~o~ Xt [Eq. (12)]. Here Xt is plotted versus t in log-log scale for two 
orbits with ir~itial excitation of the group of modes (5, 7). The first orbit, with c --- 3.5 < C, .~ 
4.5, gives Xt--)0, while the second one, with E = 5.0 > C ,  gives Xt-->a > 0. In both cases, 
7 = 0.2~r. 

We come now to the illustration of a typical result in this connection, 
with initial conditions of the same type as in Sections 3.2 and 3.3 (95% of 
the energy to a particular group of modes and 5% the charged plane). 
Taking for example an initial excitation of the group of modes 5 and 7 with 
e above threshold, precisely e = 7.0, we made a computation up to time 
T = 105l/c; the spectra [i.e., the time averages (14) versus frequency] at 
times 102, 104, 105l/e are reported in Fig. 5a. As one sees, the modes of low 
frequency become rapidly excited, while those of higher frequency require 
increasingly longer times. 

Let us now come to a more detailed analysis. First of all, for what 
concerns the spectrum at T = 1051/c, one may notice that it is quite well 
approximated by a plateau for 0 ~ n ~< 11 (equipartition of energy among 
the modes of low frequency), followed by an exponentially decreasing 
queue. This corresponds to the pair of straight lines shown in Fig. 6, drawn 
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as an interpolation to the experimental data for T = 105l/c plotted in a 
semilogarithmie scale. 

We are then confronted with two problems, namely, (1) how the 
situation depends on the class of initial conditions and (2) what can one 
guess for T ~  oo. As to the first problem, we considered an initial condition 
with excitation of the group of modes 1 and 3 above threshold, again for 
e = 7.0 and y = 0.2er. The results shown in Fig. 5b indicate, by comparison 
with those of Fig. 5a, that the memory of the initial condition is rather 
rapidly lost. 

For what concerns the problem of the limit distribution when T o  oo, 
already the results of Fig. 5 seem to indicate a trend towards equipartition, 
the modes of higher frequency requiring, however, longer and longer times 
to get involved in the process of energy sharing. This latter fact is better 
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visualized in Fig. 7, where the time averages En(T ) for all modes up to 
n = 23 are plotted versus T up to T = 1051/c in log-log scale, for the same 
orbit considered in Fig. 5a. As one sees, the general trend for the higher 
modes to jump into the main "sharing group," each at a characteristic time, 
is well exhibited. 

4.  C O N C L U S I O N S  

Let us first point out the main results exhibited by our computations. 
In our opinion the two most relevant points are the following ones. 

(a) There exist stochasticity thresholds. For initial conditions below 
such thresholds there are essentially no energy exchanges among the modes 
of the field and the motions are of ordered type, in the sense that the 
maximal LCE vanishes; for initial conditions above such thresholds there 
are intense energy exchanges involving some modes, and the motions are 
chaotic, the maximal LCE being positive. 

(b) Concerning the energy exchanges for initial conditions above 
threshold, there seems to be a trend toward equipartition (in time average). 
However, the modes of higher frequencies appear to require longer and 
longer times in order to be involved in the energy exchanges. 

For what concerns point (a), the existence of such thresholds is in 
agreement with the results already familiar to us for the mechanical models 
studied in Refs. 7-11. For what concerns point (b), the trend toward 
equipartition with increasingly longer times for the higher frequencies is in 
agreement, apart from the existence of a threshold for such effect, with the 
analytical results obtained by Guarneri and Toscani. (5) The latter results 
concern a model analogous to the present one, but with a purely linear 
spring and the superposition of a stochastic perturbation on the charged 
plane, simulating a thermal contact with a heat reservoir. More in general, 
let us recall that the existence of a characteristic time, depending on 
frequency, for an oscillator to be involved in the energy exchanges leading 
to equipartition, is indeed a feature particularly stressed by Boltzmann and 
Jeans. (6) Our results can then be summarized by saying that they indeed 
indicate a trend toward equipartition, precisely in the sense of Boltzmann 
and Jeans, but just for initial conditions above threshold. 

Thus one is confronted with a dynamical situation which partially 
agrees with the usually expected one of equipartition but is, in a sense, 
paradoxical: the simultaneous presence in a model of both equipartition 
and stochasticity thresholds is not easily understandable. Work in this 
direction is still in progress. Whether this is a general feature or not is in 
our opinion a very interesting open problem. We only would like to recall 
in this connection that such a simultaneous presence was explicitly envis- 
aged by Nernst (~7'18) in 1916. 
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APPENDIX 

We shortly describe here the numerical algorithm we used to integrate 
Eqs. (6b) and (13b). These are both of the form 

2 = - t~2 + f ( x ,  t) (A1) 

where fl is a parameter a n d f  a known function. Having fixed a time step h, 
one can write 

h 2 .. h3... 
x ( t  + h) = x ( t )  + h 2 ( t )  + -~  Yc(t) + - f i x ( t )  + O(h 4) 

h 2 h 3 . 
x ( t  - h) = x ( t )  - h:~(t) + -~  Y:(t) - --( Sc'(t) + O(h 4) 

from which one immediately gets 

x ( t  + h) + x ( t  - h) = 2x(t)  + h22(t) + O(h 4) (A2a) 

2 ( t )  = x ( t  + h) - x ( t  - h) 
2h + O(h  2) (A2b) 

Substituting into (A1) 2 and 2 as obtained from (A2), one thus gets 

flh = - ( 1 -  f l h ) x ( t - h ) +  + ( l + - ~ - ) x ( t + h )  2 1 ( 0  ~ h 2 f ( x ( t ) , [ )  O(h  4) 

which defines the approximation scheme, when the term O(h 4) is neglected. 
In practice, it is more suitable to introduce the quantities xj = x ( j h )  

and Dj = )9+ l - xj, so that one gets the recursive relations 

5+1= + DJ } 
g+ ,  = [ C - g  + h f(xj, jh)]/C + (j  = 0, 1,2 . . . .  ) 

with C +- = 1 + f lh /2 .  By the initial conditions the initial point x 0 is known, 
while D o is obtained by means of a Taylor expansion at third order. In such 
a way the method is correct at any step only up to third order in the time 
step; its speediness makes it, however, particularly suited for long computa- 
tions. 
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